If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+28x+29=0
a = 4; b = 28; c = +29;
Δ = b2-4ac
Δ = 282-4·4·29
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-8\sqrt{5}}{2*4}=\frac{-28-8\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+8\sqrt{5}}{2*4}=\frac{-28+8\sqrt{5}}{8} $
| 167.5=2/3x | | 15+19x=19x+25 | | 12+3^5x-4=29 | | x2+8x-44=0 | | a-7a=-24 | | 5z-15z-5=15 | | 138+18+4(39)+2y=180 | | 2x=6x+6(2-x) | | 8x-6=-9x+28 | | 12x+3•(x+1)=48 | | 7=-14+x | | v-v+2v+3=17 | | n-12=-4n | | 1/2(2x+4)=x+3 | | 5(x-4)=(2x+1) | | 138+18+4x+2(66)=180 | | 5u+9=89 | | .25(x+2)^2-1=0 | | 3z=2z-13 | | 4(x-3)+2x=10x-5 | | s+-8=-6 | | 6+w/2=8 | | 18=5k-4K | | 4-1=6n+8-8n+15 | | 13+7r=6r+7 | | 2x+3=-4x+27 | | -5=-6x+7x+1 | | 9x+35=15x+100 | | –5a+8=–6a | | 36=7x-5 | | 3•5x=60 | | 3(10c−2)=5c−8(–3c−2) |